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High fruit and vegetable intake is associated with decreased cancer risk. However, dietary recall data from national surveys suggest that,
on any given day. intake falls below the recommended minima of three daily servings of vegetables and two daily servings of fruit. There
is no single widely accepted measure of “usual” intake. One approach is to regard the distribution of intake as a mixture of “regular”
(relatively frequent) and “nonregular™ (relatively infrequent) consumers, using an indicator of whether an individual consumed the food
of terest on the recall day. We use a new approach to summarizing dietary data. latent class analysis (LCA), to estimate “usual” intake
of vegetables. The data consist of four 24-hour dietary recalls from the 1985 Continuing Survey of Intakes by Individuals collected from
1.028 women. Traditional LCA based on simple random sampling was extended to complex survey data by introducing sample weights
into the latent class estimation algorithm and by accounting for the complex sumple design through the use of jackknife standard errors.
A two-class model showed that 18% do not regularly consume vegetables, compared to an unweighted estimate of 33%. Simulations
showed that ignoring sample weights resulted in biased parameter estimates and that juckknife variances were slightly conservative
but provided satistactory confidence interval coverage. Using a survey-wide estimate of the design effect for variance estimation is not
accurate for LCA. The methods proposed in this article are readily implemented for the analysis of complex sample survey data.
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1. INTRODUCTION that include estimation of the regularity of consumption are
critical to measure progress toward this goal.

Although there is no clear definition of “usual” dietary
intake (Guenther 1997), it can be regarded as intake over
some long period. Methods currently used for measuring usual
intake have been described by Thompson and Byers (1994).
One method, the focus of this study, requires the collection
of two or more 24-hour recalls or daily food diaries. Sev-
eral methods for combining dietary records have appeared in
the literature. The 1977-1978 Nationwide Food Consumption
Survey (Human Nutrition Information Service 1983) estimated
the percentage of individuals using a particular food as the
number reporting consuming that food at least once in the
3-day survey period, divided by the group size. Hartman et al.
(1990) reported mean daily intake for several food groups
based on 12 two-day diaries. Popkin, Siega-Riz, and Haines
(1996) summarized information on consumption of various
foods from a single 24-hour recall into a dietary score for each
respondent.

Analyses of dietary data have focused primarily on nutrient
intake (e.g., fat, vitamin A) rather than on the intake of par-
ticular foods (e.g., butter, carrots). Nutrients are typically con-
sumed daily in some quantity, with the result that zero intakes
rarely occur. In contrast, specific foods are consumed less fre-
quently, and zero counts are expected to occur. In the 1985
CSF1H dataset, the intake of each food consumed by a respon-
dent was reported in grams based on portion-size estimates
(U. S. Department of Agriculture 1987). Thus, for a given

- food, either an amount in grams or a 0 is associated with each
respondent for each recall day. The distribution of intake for
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Frequent consumption of fruit and vegetables has been
linked to reduced cancer incidence. For many cancer sites,
persons with low intake of these foods experience about twice
. the cancer risk as do those with high intake (Block. Patterson,
.and Subar 1992). Dietary surveillance is used to monitor the
intake of foods that are important risk factors for cancer and
- heart disease. A major goal of dietary surveillance is to esti-
mate the distribution of intake of nutrients and foods in the
population. At a policy level. information on dietary intake is
important for shaping dietary guidance and for the evaluation
of dietary intervention programs, such as the national Five A
Day program, that encourages the consumption of five or more
servings of fruits and vegetables daily (Subar et al. 1994). In
this article we focus on vegetable consumption alone.

Twenty-four-hour dietary recall data from national sur-
veys suggest that. on any given day, consumption falls below
the recommended three or more daily servings of vegeta-
bles (Patterson. Block. Rosenberger, Pee, and Kahle 1990;
Patterson, Harlan. Block, and Kahle 1995; Krebs-Smith, Cook,
Subar, Cleveland. and Friday 1995). The mean of two non-
consecutive recall days from the 1994-1996 Continuing Sur-
vey of Food Intakes by Individuals (CSFII) showed that 55%
of the population age 20 years and older consumed three or
more servings of vegetables (U. S. Department of Agricul-
ture 1998). A goal of Tracking Healthy People 2010 (U. S.
Department of Health and Human Services 2000) is increas-
ing consumption to 75%. New dietary assessment methods
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as counts or “mentions” of a food or foods in a food group,
where a mention 1s any nonzero quantity. The distribution
of intake can then be modeled by, for example, a Poisson
distribution with overdispersion at O (Smith, Graubard, and
Midthune 1997) or by other mixture models. In all of these
cases, the distribution can be regarded as arising from a mix-
ture of “regular,” that is, relatively frequent consumers and
“nonregular,” that is, relatively infrequent consumers.

Dietary data aiso have been analyzed separating consumers
and nonconsumers (Subar et al. 1993; Patterson et al. 1995).
Such data can be further simplified by identifying a consumer
of a given food (or food in a food group) with a 1 and a non-
consumer with a 0. These two approaches have the advantage
of mitigating the measurement error inherent in dietary data
based on portion size (Smith 1991; Young and Nestle 1995).
Reporting the fact of consumption is simpler and likely to be
more accurate than the quantity consumed. In fact, such mea-
surement error may be a reason for dichotomizing the data.

Latent class analysis (LCA) is a method of grouping indi-
'viduals with respect to some underlying, unobservable vari-
able based on data from polytomous indicators or items. This
method can be useful in the analysis of the intake of foods, for
example, in estimating the regularity of vegetable consump-
tion. Individuals in a sample can be classified into two or more
latent classes based on binary data reflecting their consump-
tion/nonconsumption of vegetables.

National dietary data are typically collected in surveys that
have complex sample designs involving multistage sampling
with sample weighting. The analysis of such designs has
been described for mixture models (Wedel, ter Hofstede, and
Steenkamp 1998; Patterson 1998). The focus of this study
was to fit a population latent class model (LCM) to data from
the 1985 CSFII and to develop appropriate LCA methods for
complex sample surveys (see Patterson 1998). In Section 2 the
CSFII is summarized. In Section 3 the LCM is introduced,
and the jackknife is presented as a method of estimating stan-
dard errors for the LCM parameters. The CSFII data are ana-
lyzed in Section 4, and a simulation is presented in Section 5.
Finally, the method and results are discussed in Section 6.

2. THE CONTINUING SURVEY OF FOOD
INTAKES BY INDIVIDUALS

The 1985 CSFII comprised a multistage stratified area prob-
ability sample of women age 19-50 living in private house-
holds in the 48 conterminous states. The conterminous United
States was divided into 60 “relatively homogeneous™ strata,
and 2 primary sampling units (PSUs) were sampled per stra-
tum. Although the survey was designed to be self-weighting,
differential sample weights were computed to reflect various
levels of nonresponse at the household and individual levels.
(For more details see U. S. Department of Agriculture 1987.)

In an attempt to estimate usual intake, six dietary recalls of
foods consumed during the previous 24 hours were collected
at about 2-month intervals. The first recall was collected in a
face-to-face interview; the next five recalls were done by tele-
phone. The public-use CSFII data tape includes all women
who participated in the face-to-face interview and completed
at least three phone recall interviews. For women who com-
pleted the face-to-face interview and four or five phone recall
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Table 1. Distribution of Days on Which Respondents Reported
Eating a Vegetable

Number Weighted Cumulative

of Days Percent Weighted Percent
[¢] 3.1 3.1

1 9.4 12.5

2 224 34.9

3 37.7 72.6

4 27.4 100.0

_interviews, three phone recalls were randomly selected. Thus

recalls 2—4 do not represent the same recall occasions for all
of the women. Those women who were lost because of insuffi-
cient numbers of interviews were accounted for in the sample
weights.

This dataset has been used as an exemplar to test various
methods of analysis because it consists of four independent
food records on each respondent (Haines, Hungerford, Popkin,
and Guilkey 1992; Nusser, Carriquiry, Dodd, and Fuller 1996).
The dataset used in this analysis consists of 1,028 women
who had nonzero food intake on all of the recall days. (Four
women who had zero food intake on at least one of the recall
days were eliminated.) Five of the strata in the dataset had
a single PSU. For the purposes of variance estimation, these
were paired/combined in such a way that the resulting 56 strata
each contained 2 PSUs and 1 stratum contained 3 PSUs.

For each interview, a respondent was assigned a value of |
if she reported consuming any vegetable on the recall day (i.e.,
one or more mentions) and a 0 otherwise. This broad group
of vegetables includes salad. legumes. and such foods as peas,
carrots, corn, and other green and deep-yellow vegetables, but
not potatoes; this group of vegetables is of special interest
because of its nutrient content. o

The weighted relative distribution for the number of recall
days on which sampled women reported consuming at least
one vegetable is shown in Table 1. On average, respondents
reported consuming at least one vegetable on 2.8 days out
of 4. Approximately 73% of respondents did not consume a
vegetable on at least | of the 4 recall days and 12.5% did so
on at most | of the 4 days.

3. LATENT CLASS MODEL FOR SURVEY DATA

An LCM is used to explain underlying, unobservable cate-
gorical relationships, or latent structures, that characterize dis-
crete multivariate data (Lazarsfeld and Henry 1968; Goodman
1974; Dayton and Macready 1976; Haberman 1979). When
food intake is dichotomized, LCA is a technique uniquely
suited to combining dietary information from several food
records or 24-hour recalls to characterize the regularity of veg-

‘etable consumption of a population (as here) or population

subgroup for a food or food group of interest. Here, regu-
larity of vegetable consumption is the underlying structure of
interest.

Methods for LCA that take into account sample design
features, such as sample weighting, clustering, and stratifica-
tion used in complex surveys like the CSFII, have not been
described in the literature. However, results from regression
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analysis have shown that if data are collected under a com-
plex sampling design and simple random sampling (SRS)
is assumed in the analysis, then parameter estimates can be
biased and standard errors underestimated (Korn and Graubard
1999, pp. 159-172).

Let Y, = {v;} be the vector-valued response for J survey
items, j =1, . J, for the ith respondent drawn from a finite
population of size N. The polytomous response options take
on discrete values r =1, ... R, for the jth item. The probabili-
ties, 8,, for the unobserved LCs. ¢, {=1,..., L, are called LC
proportions. Item-conditional probabilities, a;;. . . @ TEprE-
sent the probabilities of response r to item j given membership
in LC [. Thus for each item j there is an R;-vector of con-
ditional probabilities. To illustrate the notation, consider data
based on four polytomous variables with, say, R, =2, R, =
4, R; =3, and R, =2 denoting the number of discrete values
taken on by each item. Y, = (v;, ¥in» Vi3> yiu) = (1.3,2.2)
might represent the responses for the ith respondent.

The traditional LCM can be defined as

Pr(Y, o) = [ [T ()
j=lr=i
and
Pr(Y,) = 3_6,Pr(Y, | c)). @

I=I
where the Kronecker delta is defined as

ity =
o

r=1,...,

otherwise.

The usual restrictions for item-conditional probabilities apply
(i.e., Zf;l @, = 1 ¥j) and. in addition, the LC proportions
sum to 1 (i.e., Zf‘:, 6, = 1). Note that, unlike models proposed
by Clogg and Goodman (1984, 1985), the model in (1) and (2)
does not directly reflect grouping of respondents, for example,
males and females.

In the context of the CSFII dataset, the response variables,
¥;;» are (dichotomous) indicators of consumption of some food
of interest on each of 4 recall days. For a two-class model, the
LC proportions refer to the proportions in “regular” and “non-
regular” vegetable consumption groups. Each item-conditional
probability refers to the probability or “propensity” for con-
suming at least one vegetable on the corresponding recall day,
given membership in a specific consumption group.

Assuming SRS with a sample of size n, the log-likelihood

is
}. 3)

Fundamental to classical LCA is the assumption that the
observed variables are independent within LCs. Parameter
estimation can be accomplished by means of maximum likeli-
hood methods using conventional iterative algorithms such as
Newton—Raphson or the EM algorithm (Dempster, Laird, and
Rubin 1977; Heinen 1996).

Bijr
Ijr

A= Zmze,m (Y, |c,)—21n[29,HH

1 j=1r=I
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In the case of non-SRS, where sample weights,w;, are avail-
able for each respondent (e.g., from a public-use data tape),
these weights are usually the product of the reciprocal of the
sample inclusion probability, a factor that adjusts for nonre-
sponse, and a factor that reflects poststratification adjustment.
These weights may be expansion weights that sum to the total
population size or relative weights that are scaled to sum to the

sample size. A sample-weighted pseudo-log-likelihood can be
defined as

n L
A, =Y win) 6Pr(Y,|c)

l=1
Sijir
I/r .

~Le(Se 1T

Maximizing the pseudo-log-likelihood simuitaneously with
respect to 6, and a;;, provides design-consistent estimates of
the underlying population parameters (Pfetfermann 1993).

The LC model used in this article can be expressed as a
log-linear model, using either a Poisson or binomial distribu-
tion for the cell counts in the finite population. In the survey
setting, the weighted pseudo-likelihood is obtained by replac-
ing the unweighted cell counts with the sample-weighted cell
counts in the likelihood, as implied by (4). An alternative
method for log-linear analysis of sample weighted contingency
tables (Clogg and Eliason 1987; Agresti 1990, p. 199) uses
the unweighted cell counts with an offset, consisting of the
log of the inverse of the average cell sample weight, in each
cell of the contingency table. Under a correctly specified log-
linear model for the population, this method will produce con-
sistent estimates of model parameters, that is, estimates that
are asymptoticaily equal to the values that would have been
obtained had they been computed using the entire finite pop-
ulation. However, if the log-linear mode! for the population
is misspecified, then the two methods will not agree asymp-
totically. We prefer the weighted pseudolikelihood method
because its estimates will be approximately unbiased for val-
ues of the population model parameters, regardless of whether
the model was correctly specified.

Although not explicit in the models as written, clustering
is taken into account when estimating standard errors. Cluster
sampling, such as that in the CSFII, induces correlation among
responses and typically results in sampling variances that are
larger than would be the case under SRS. Further, standard
test statistics (such as the Pearson chi-squared) used in LCA
are no longer asymptotically distributed as chi-squared random
variabies when the data arise from a survey with clustered
sampling (Hidiroglou and Rao 1987; Roberts, Rao, and Kumar
1987).

Two methods of calculating standard errors for complex
sample survey data are adjustment using a design effect (deff),
and the use of a replication method such as the jackknife.
The first method was used in LCA by Haertel (19844, 1984b,
1989). The jackknife is applicable to virtually any type of
complex sample design (Woiter 1985) and is known to provide
reasonable standard errors for many statistics that are smooth
(differentiable) functions of the data (Efron 1982). The appli-
cability of the jackknife to the estimation of LC parameters
under SRS has been studied empirically by Bolesta (1998).

i=l1

(4)

uM»
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In complex sample surveys, sample weights and clustering
usually inflate the variance, whereas stratification may result
in variance reduction. The deff, the ratio of the variance under
the full design to the variance assuming SRS, is usually greater
than 1. Kish (1965, pp. 258-259) described this “comprehen-
sive factor” as attempting to summarize the effects of “various
complexities in the sample design, especially those of clus-
tering and stratification. .. (and) may include effects of. ..
varied sampling fractions.” He noted that the design effect can
be used to obtain an effective sample size, n’ = 777~ o be
used in place of n, the actual sample size, in the calculation
of standard errors. The size of the deff depends on the vari-
able being estimated and may vary among subsets of the pop-
ulation. If a surveywide estimate of the deff is available and
applied to all estimates, then the adjustment may be too large
or too small and also may give misleading results for popu-
lation subgroups (Korn and Graubard 19954). Haertel (1984a,
1984b, 1989) took the sample design into account in the cal-
culation of standard errors in LCA by using an external esti-
mate of the overall deff to estimate an effective sample size,
which he then used in the calculation of standard errors.

The jackknife was introduced as a method of bias reduc-
tion by Quenouille (1949), and the procedure was subse-
quently used to estimate the variance of a parameter esti-
mate (Mostelier and Tukey 1968; Miller 1968, 1974). Frankel
(1971) made an early application of this technique to complex
sample survey data. The method proceeds as follows. Let v
be the sample-weighted estimate of a population parameter of
interest, vy, for a sample of size n. In a complex sample sur-
vey with stratification and clustering, the PSUs are randomly
grouped within strata, where each random group has approxi-
mately the same number of PSUs. Let k, denote the number of
random groups in stratum i, h=1,..., H. A random group
of PSUs in stratum # is omitted, and the remaining observa-
tions in that stratum are reweighted by a multiplicative factor
ky/(k, —1). The usual parameter estimates, called jackknife
estimates, are derived from the reduced sample. This process
1s repeated sequentially for the entire sample of PSUs. A vari-
ance estimator based on the jackknife is (Wolter 1985)

@ $ =3y g — gy
7)—2 Z k (7(.\'11)_7) . (5)
h

h=1

=]

where 7y, is the jackknife estimate of y omitting group s in
stratum h. Alternatively, ¥ may be replaced by the mean of
the jackknife estimates, 3/ = Y1 Visin/ Zne, k;. The
foregoing procedure also can be used without grouping the
PSUs, treating each PSU as a group of size 1.

In general, resampling methods are applied to PSUs without
attention to the form of subsampling within the PSUs. This
convenient feature is justified by the fact that when the first-
stage sampling fraction remains low (<10% for practical pur-
poses), the standard error may be accurately estimated from
the variation between PSU totals. The contribution from sec-
ond and later stage variances is reflected in the sampling error
estimated from the PSUs (Lee, Forthofer, and Lorimor 1986).
In addition, jackknife variance estimation correctly estimates
the component of variance due to sample weighting.
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We are unaware of any commercial LC software appropri-
ate for analyzing complex sample survey data. Weighted esti-
mates of LC parameters are provided by the computer pack-
ages LEM (Vermunt 1997) and Latent Gold (Vermunt and
Magidson 2000); however, these programs do not provide cor-
rect estimates for the standard errors for surveys with stratifi-
cation and clustering. For the current study, GAUSS (version
3.5) (Aptech Systems, Inc. 1997) programming code was writ-
ten to perform the LCA and the jackknife and verified for tra-
ditional LCMs before being applied to complex survey data.

4. ANALYSIS OF DATA FROM THE CONTINUING
SURVEY OF FOOD INTAKES BY INDIVIDUALS

We fit a two-class LCM to the CSFII data taking sample
weights into account. Three-class models were not assessed
for these data, because the unrestricted three-class model is
not identified for four variables (Lindsay, Clogg, and Grego
1991). As shown in Table 2, 6. the proportion in the first latent
class (LC1) is estimated to comprise 18% of the population.
LC1 can be interpreted as consisting of “nonregular.” or infre-
quent, vegetable eaters, that is, those who do not consume
vegetables on a regular (daily) basis. The second latent class
(LC2), comprising 82% of the population, can be interpreted
as consisting of those individuals who consume at least one
vegetable as more or less a regular (daily) practice. In LCI,
estimates of the item-conditional probabilities for vegetable
consumption on a given recall day, &,;, were variable, rang-
ing from .28 to .46 for vegetable consumption on the jth day,
whereas in LC2 these probabilities, &,;, were similar and con-
sistently higher, ranging from .73 to .78 (see Table 2). Note
that we drop the middle subscript (r) for the item conditional
probabilities because the responses have only two levels. The
Jjackknife standard error of the LC proportion, .13, was rei- -
atively large, as were jackknife standard errors for the item- -
conditional probabilities in LCI1.

In general, the larger the LC. the more observations it rep-
resents and the smaller the variability in the estimates for
the item-conditional probabilities for that class. We calculated
estimates of standard errors based on SRS using a weighted
Fisher information based on the (weighted) pseudolikelihood,

Table 2. Latent Class Analysis of Vegetable Consumption Habits: 1985
Continuing Survey of Food Intakes by Individuals

Weighted data Unweighted data

Mean of Jackknife
jackknife standard

Mean of Jackknife
jackknife standard

Parameter Estimate estimates error Estimate estimates  error
[ 178 179 .128 331 332 137
28 456 456 .200 .604 .604 .078
Qg .391 .390 .227 510 510 094
Qg 275 276 113 .396 397 .082
[P 382 392 .148 .464 .464 .074
a,, .781 .781 .021 .800 .801 019
ay, .764 764 .030 .818 .818 .034
[« .766 .766 .069 .810 811 .065
oy, 729 .730 .040 .787 .787 .046
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where the weights were normalized to the sample size. These
were about one-half the size of the jackknife standard errors.
For the LC proportion, the standard error from the Fisher
Information was .07, compared to .13 from the jackknife; this
translated into a deff of about 4. Deffs for the conditional
probabilities ranged from about | to 4 (data not shown).

The Akaike information criterion (AIC) has been used to
assess goodness of fit for LCMs (Lin and Dayton 1997), but
has not been modified for comptex sample survey data. We
used a Wald test to test goodness of fit for our two-class
model. because this test can be adapted to sample survey
data by using a design-based estimate of the variance matrix.
The Wald test statistic is the quadratic form W = d'v-id,
where d is a 15 x 1 vector of the differences between the
observed and expected cell proportions for 15 of the 16 pos-
sible outcome cells and V is the estimated variance matrix
for d. The jackknife was used to compute V. We compared
W x (57—15+1)/(57 x 15). where 57 is the number of PSUs
(114) minus the number of strata (57), to an F distribution
with 15 and 43 degrees of freedom. (See Korn and Graubard
1999, pp. 91-93, for a discussion of Wald tests.) For the two-
class model, the test statistic was .72 (p = .75), indicating that
the model fits the data satistactorily. To assess bias in param-
eter estimates incurred by ignoring sample weights. we fit an
" unweighted two-class model to the data (see Table 2). For the
unweighted data, the estimated proportion failing in LC1 was
.33 as opposed to .18 for weighted data. Differences for the
conditional probabilities were smaller. Overall, the variances
tended to be greater when the weights were used than when
they were ignored.

We used Wald tests for the difference between the weighted
and unweighted estimates to assess whether the sample
weights were informative. Because weighted analyses tend to
increase the variance of estimated parameters, these tests are
known to have low power. Testing the 8 item-conditional prob-
abilities, the F value for the Wald test with 8 and 57 degrees
of freedom was 1.02 (p = .49). Testing only the LC propor-
tion, the F value for the Wald test with | and 57 degrees of
freedom was 2.01 (p =.16). The results of this analysis sug-
gest that the weights may not be informative.

The U. S. Department of Agriculture computed a single
estimated overall deff of 1.43 for analyzing the 4 days of
records for the 1985 CSFII. It was computed as 1+ {cv(wes)?}
(Joseph Goldman, personal communication), where cv(wts) is
the coefficient of variation of the sampling weights. This deff
takes into account the variability associated with the weights,
but not the effects of clustering or stratification. i

As we had decided to retain the weights, we were inter
ested in obtaining an estimate of the deff due to clustering
and stratification alone, apart from that due to the weights.
For the sample of 1,028 women, we generated a vector of
1,028 uniform random numbers, each number associated with
an observation. Next, we randomly regrouped the response
vectors into clusters retaining the original cluster sizes. We
then fit the reordered data to a two-class model and used the
resulting variances to estimate the dett for each parameter esti-
mate. The deff was estimated as .97 for the LC proportion and
ranged from .98 to 1.17 for the item-conditional probabilities
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Table 3. Latent Class Analysis of Vegetable Consumption Habits; 1985
Continuing Survey of Food Intakes by Individuals Weighted Data,
Clusters Broken by Random Reordering

Jackknife Jackknife
variance  variance Ratio of

Mean of estimate, estimate, variances

jackknife  without with with:without
Parameter Estimate estimates clusters clusters clusters
[’} 178 179 017 .016 972
ay, 456 455 041 .040 .976
4 .391 .390 .050 052 1.027
g 275 276 011 .013 1.157
[P .392 3N .020 .022 1.111
Qg4 781 .781 .000 .000 .980
oy 764 764 .001 .001 1.095
[« 2% .766 .766 .005 .005 1.012
py 729 730 .001 .002 1.122

(Table 3). These etfects were modest compared to the deffs
that incorporate weighting as well as clustering, indicating
that most of the increase in variance was due to the sample
weights.

5. SIMULATION

We performed a simulation to investigate the validity of the
methods used for taking weights and clustering into account
for the CSFII data and to assess the accuracy of the jack-
knife standard errors. This simulation was based on numbers
of strata (i.e., 60) and PSUs (i.e., 2 per stratum) similar to
those in the CSFII. The size of the PSUs in the simulation
was set at 8, the average PSU size in the CSFII. For sim-
plicity, all PSUs were of equal size and the sample size was
set at 960, a muitiple of 8 and similar to the CSFII sample
size. A population with an underlying two-class structure was
simulated. We drew the LC proportions for 30 of the strata
from a beta distribution 8(1,9), with mean .1, (i.e., 8, = .1),
and drew the proportions for the remaining 30 strata from a
beta distribution B(3,7), with mean .3 (i.e., 8, = .3), so that
the proportion in LC1 in the overall simulated population, .2,
was close to .18, as estimated in the two-class solution for the
CSF1l data. We randomly generated values of the LC propor-
tions from these beta distributions, inducing intracluster corre-
lations within PSUs. We selected the beta distribution because
it is a flexible two-parameter distribution (scale and location
parameters), has values lying in the [0, 1] interval. and is the
natural conjugate prior distribution for the binomial distribu-
tion. In theory, the intraclass correlation coefficient for a beta
distribution with parameters v, w is (v +w-+1)~' (Brier 1980).
We set the item-conditional probabilities at .2 for LC1 and .7
for LC2 to approximate the CSFII values.

A plot of the sample weights from the CSFII suggests that
they are approximately lognormal in distribution. We used
moments of the empirical distribution of the weights to define
a lognormal distribution with a median of .84 and a variance
of .616, and generated sample weights for the observations in
the simulation from this distribution. The simulation can be
viewed as a series of one-stage cluster samples where each
cluster consists of b observations and where the LC propor-
tions vary by cluster within each stratum.
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Table 4. Estimated True and Jackknife Variances for Simulation

Estimated Jackknife Ratio of
true estimate of jackknife:true

Parameter variance variance variance
f .00202 .00217 1.074
oy, .00518 .00534 1.031
Uy .00507 .0054 1.065
Q45 .00512 .00532 1.039
Oy, .00499 .00532 1.066
Mean .00509 .00535 1.050
Uy, .00076 .00078 1.026
Oy .00077 .00078 1.013
Uy .00075 .00077 1.027
Uy .00077 .00079 1.026
Mean .00076 .00078 1.023

To investigate the effect of clustering on the jackknife vari-
ance, we generated clustered data from the aforementioned
‘population, and estimated the variance taking the clustering
into account. We then calculated the jackknife variance for
a sample from the same population constructed using the
reordering method described in the previous section in the dis-
cussion of the deff. We randomly regrouped observations into
clusters of the same size and, using these clusters as PSUs,
estimated jackknife variances.

The code for the simulations was written in the matrix lan-
guage, GAUSS, version 3.5, and the EM algorithm was used
to estimate model parameters. The programming criteria used
in the simulation were (1) 1,000 replications, (2) convergence
criterion of 107¢, and (3) maximum number of 500 iterations
allowed to achieve convergence in the LCA algorithm (non-
converging cases were replaced in the simulation).

To assess the validity of the jackknife variances from
the simulations, we generated proxy population variances by
calculating mean squared errors for the parameter estimates
based on 10,000 replications using the same parameter val-
ues as in the simulations. The ratio of the jackknife variance
estimate to the corresponding proxy variance was taken as a
measure of the accuracy of the jackknife estimate. A 95%
two-tailed confidence interval (CI) was calculated for the sim-
ulation parameter values as

Cl=10—1, V', 6+1, V', (7)

where 6 can be either the LC proportion or an item-conditional
probability, « is the type 1 error rate, df is the number of
(jackknifed) groups minus the number of strata, and var’ is
the jackknife variance estimate.

As expected (Kish and Frankel 1974), for all parameters, the
Jackknifed variances modestly overestimated the proxy vari-
ances (Table 4). Estimates for the item-conditional probabil-
ities were within 7% of the proxy variances for the smaller
LC and within 3% for the larger class. The jackknife overes-
timated the variance of the LC proportion by 7%. As shown

in Table 5, coverage was close to the nominal .95 level for all
parameters.
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Table 5. 95% Confidence Interval Coverage for Simulation,
n=960, 6, ~B(1,9), 6, ~ B(3, 7), Lognormal Weights

Proportion Proportion
in lower in upper
tail tail Coverage
0 0 .060 940
@y, 025 042 933
oy, .023 .037 940
ay .034 .042 .924
ay, .024 .032 944
Mean .027 .038 935
@y 014 028 .958
@y 017 .026 957
@y 016 .030 954
Qg 028 026 946
Mean .019 .028 .954
6. DISCUSSION

Muitiple dietary records of food intake typically have been
summarized by means and proportions. LCA is a new method
of combining records to group respondents into categories, or
classes, that define patterns of food consumption and provide
estimates of class size. We fit an unconstrained model because
of the possibility that seasonality or other variables might
affect vegetable consumption over the course of the survey
year. Fitting a two-class model, we found that about 18% of
the population of women age 19-50 consumed a diet deficient
in vegetables in that they did not make consumption of these
foods a regular practice. LCA also provides estimates of the
item-conditional probabilities (class-specific dietary propen-
sity scores). There was a suggestion that respondents tended
to be more likely to report consuming at least one vegetable
on the first survey day than on later recall days. Because veg-
etable consumption is advocated as part of a good diet, respon-
dents may have been more likely to report eating a vegetable
in the face-to-face interview than when queried by telephone.
Although the similarity of the item-conditional probabilities
for recalls 2—4, especially for LC2, suggested that a model
restricting these probabilities to be equal might be appropriate,
we rejected this course because it would have been a post hoc
analysis. The similarity of the item-conditional probabilities
over the 4 recall days for LC2 suggested a stable propensity
to consume vegetables. This was not true for LCI.

In this study, we used LCA to estimate the proportion of
women age 19-50 that consume vegetables on a regular basis,
a different objective than estimating the number of servings
per day as in some other types of analysis. LCA requires only
indicators of consumption and can lead to data reduction in
some datasets. Thus LCA can be readily performed on data
that otherwise may require a multiple-step, perhaps lengthy,
analysis involving transformations and distributional assump-
tions. For example, Nusser et al. (1996) proposed a complex
multistep procedure for estimating the distribution of nutrient
intake. Finally, LCA provides a new way to describe “usual”
dietary intake and to estimate the number and size of sub-
groups that display different food consumption patterns. Such
analyses may be useful in developing public health interven-
tion programs.
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There has been a long-standing debate in the statistical
literature on whether to do weighted or unweighted anal-
ysis (i.e., design-based or model-based analysis) of survey
data (Brewer and Mellor 1973; Smith 1976, 1984; Hansen,
Madow, and Tepping 1983; Fienberg 1989; Kalton 1989;
Korn and Graubard 1995a, 1995b). It is well known that
using sample weights will resuit in approximately unbiased
or consistent estimates for population parameter values, but
may increase the variances of these estimates, whereas an
unweighted analysis may result in biased or inconsistent esti-
mates, but smaller variances. We have described a weighted
analysis that uses weighted pseudolikelihood estimation, and
applied this method to the analysis of CSFII data. Consistency
of weighted estimates is maintained regardless of whether the
posited model is correctly specified. In contrast, when the
sample weights are informative for the analysis of interest,
unweighted estimates will depend on the particular sample
weighting scheme used in that analysis (Pfefferman 1993).
Issues to be considered when choosing a weighted versus an
unweighted analysis are (1) the purpose of the analysis—
analytical versus descriptive; (2) the magnitude of the inef-
ficiency that would result from a weighted analysis if the
weighting were unnecessary to correct for bias and whether
this inefficiency is small relative to the effect being esti-
mated; (3) the expected bias from an unweighted analysis; and
(4) whether sufficient information is known about the sam-
ple design and whether variables are available to model the
sample design in an unweighted analysis (Korn and Graubard
1999, chap. 4).

For LC modeling, sample weighting can affect the estima-
tion of the item-conditional probabilities, the LC proportions,
or both when sampling rates differ across subgroups. Consider
an unstratified analysis of a population comprising two sub-
groups (i.e.. a single LC model fitted to the entire population),
where both subgroups have the same number of underlying
latent classes but are sampled at different rates. If the LC pro-
portions differ between subgroups, then sample-weighted esti-
mates of the LC proportions will differ from unweighted esti-
mates. If the item-conditional probabilities are homogeneous
across subgroups, then the weighted and unweighted estimates
of the item-conditional probabilities should be approximately
the same. whereas the LC proportions could differ. If these
probabilities differ between subgroups, then again weighted
and unweighted estimates can differ. If the analysis is strati-
fied so that a separate LCM is fitted to each subgroup, then
weighting is no longer necessary. However, stratifying among
all population subgroups is rarely feasible.

The CSFII data analysis was a descriptive analysis that used
LC modeling without covariates. The objective of the anal-
ysis was to obtain unbiased estimates of the LC proportions
and item-specific probabilities for the target population. Fol-
lowing the recommendations of Korn and Graubard (1999,
pp. 180-182) we used a weighted analysis for this descriptive
study. For an analytical study, the trade-off between variance
and bias must be carefully considered. An analyst choosing
to use unweighted analysis because of large inefficiency due
to the weighting should adjust for the sample weighting by
including in the analytic model those sample design variables
used in determining the sample weighting (Korn and Graubard
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1999). Regardless of the type of analysis done, model ade-
quacy should be assessed using diagnostic methods, as we
have tried to do here.

Analyses of the CSFII data and the simulations done with
and without sample weights demonstrated both the possibil-
ity of incurring unacceptable bias by ignoring the weights
and the potential increase in variance arising from including
them unnecessarily. The CSFII design is described as self-
weighting, although weights were used to adjust for eligibility
within the household and for nonresponse. The self-weighting
aspect of the design might lend support to the notion that the
weights could be ignored, although this is not obvious for the
present analysis. The Wald test comparing the weighted esti-
mates to the unweighted estimates showed a larger, but not
significant, effect on the LC proportions than on the item-
conditional probabilities. This test has low power. however.

The jackknife is an easily applied method for obtaining
empirical variance estimates for an LCM applied to complex
sample survey data. Our simulation suggested that the jack-
knife standard errors slightly overestimate the actual standard
errors. Despite this overestimation, these estimates seem suf-
ficient for most practical applications. However, it may be
worthwhile to investigate other resampling methods, such as
the bootstrap or modifications to the jackknife. Another pro-
posed approach uses linearization variances based on Taylor
series approximations of the estimating equations from the
sample weighted pseudolikelihood (Wedel et al. 1998). This
approach is less flexible in that it requires developing new soft-
ware (e.g.. for the calculation of second derivatives for each
term in the model for each model considered).

Another approach to analyzing data trom cluster samples
is using hierarchical modeling with random effects to model
the correlation at each stage of cluster sampling. The use of
random-effects models applied to survey data is an area of
current research with no well-established methods, even in
the case of linear models (Korn and Graubard 1998; Ptetter-
mann, Skinner, Holmes, Goldstein, and Rasbash 1998). This
approach is difficult to implement because it requires knowl-
edge of all levels of clustering, which is often unavailable
on public use files because of confidentiality concerns. The
approach that we have taken, (weighted) pseudolikelihood
with design-based jackknife variance estimation, is commonly
used to analyze survey data with complex sampie designs
(Skinner, Holt, and Smith 1989; Korn and Graubard 1999.
p. 101).

We do not recommend inflating the variance by an overall
survey deff, as done by Haertel (1984a, 1984b, 1989). First,
we found that the jackknife standard errors, which take the
sample design fully into account, were about twice as large
as standard errors based on Fisher information for a sample-
weighted likelihood; this difference translates into deffs of
approximately 4. These very large deffs were due primarily to
the effects of sample weights, with only modest etfects due to
clustering and stratification. These deffs varied by parameter
and were larger than the overall detf of 1.43 estimated by the
U. S. Department of Agriculture.

National surveys such as the CSFII, the National Heaith
and Nutrition Examination Survey, and the National Health
[nterview Surveys are major sources of information on dietary
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practices in the general population and in demographic sub-
groups. In the past, LCA has not been applied to these data.
With the development of methods to accommodate weighted
and clustered data, LCA can be used to describe food con-
sumption patterns in the whole population, as well as in sub-
sets of interest.

The 1994-1996 CSFII collected only two 24-hour recalls.
LCA can be applied to surveys such as this by introducing
two or more latent variables, such as separate latent indicators
of fruit and of vegetable intake, and fitting models with two
or more classes. These may be independent or correlated, as
discussed by Hagennars (1990). Alternatively. multiple group
analyses can be performed, where the groups relate, to say,
sex. 1o race. or to some other classification variable (Dayton
1999).

An area of future research is the development of goodness-
of-fit test statistics for LC models for survey data. Although
sumple weights might be readily incorporated into statistics
based on the log-likelihood, the distribution of test statistics
such as the AIC must be modified to take into account clus-
tering or stratification.

[Received January 2000. Revised April 2002.]
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Comment

It is well known that collecting and analyzing dietary intake
data can be challenging (e.g.. Beaton et al. 1979; Basiotis.
Welsh, Cronin, Kelsay, and Mertz 1987; Dwyer and Coleman
1997). Yet despite the difficulties inherent in accurately mea-
suring food intakes and in drawing useful inferences from
those measurements. the U. S. government relies on com-
plex dietary intake surveys to guide nutrition and health pol-
icy, monitor the performance of food assistance programs,
and design interventions such as national food fortification
programs. In this light, the work of Patterson, Dayton, and
Graubard is welcome in that it seeks to capitalize on the rich
data available for dietary assessment.

In this discussion we focus on the subject matter interpreta-
tion and the statistical aspects of the variable used to indicate
dietary intake as well as the latent class model used to make
inferences using this variable. In the next section we discuss
the importance of informative dietary intake measures with
respect to policy development. In Section 2 we focus on the
model itself. Finally, in Section 3 we provide some conclu-
sions and thoughts.
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1. VARIABLES OF INTEREST
TO POLICY MAKERS

In nationwide surveys such as the Continuing Survey of
Food Intakes by Individuals (CSFII), respondents are asked
to report on the amounts of food consumed during the previ-

ous 24 hours. The amounts of the various foods consumed are

expressed in such units as glasses, cups, grams, slices. table-
spoons, and so forth. Even though the interviewer arrives at
a respondent’s home armed with two- and three-dimensional
models that are meant to help the respondent to accurately
quantify the amount of each food consumed. it is still well
known that correctly gauging portion sizes can be difficult
(Hartman et al. 1994; Haraldsdottir, Tjonneland, and Overvad
1994; Dwyer and Coleman 1997). When interviews are con-
ducted over the phone, measurements are likely to be even
more inaccurate. In this sense, the authors correctly argue that
the measurement error in dietary intake data can be signifi-
cant. They believe that the presence of this measurement error,
compounded by the fact that respondents tend to underreport
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